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D.a=-1,b=-2
Bl 2.1

271=1421 2=3+4+2:

21+ 2o=4+41 2 — 29 =—-2
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2 =(1+2i)(1-2i)=1-4>=5
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(21 + 22)° = 16 (1 + i* + 2i) = 32
(21 + 22)* = 32%2 = —322
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B 2.7 KAk
sin(f + ¢) = sin 6 cos ¢ + sin ¢ cos 6

cos(f + ¢) = cos @ cos ¢ — sin O sin ¢
UEW]

o0 . it — i(0+9)

(cos @ + isinB)(cos ¢ + ising) = cos(d + ¢) + isin(6 + ¢)

(2.7)

(2.8)

(2.9)

cos B cos ¢ — sinfsin ¢ +i(sin O cos ¢ + i sin ¢ cos ¢) = cos(f + ¢) + isin(0 + ¢)

K g J

VR e Ry T R R b
sin(f + ¢) = sin cos ¢ + sin ¢ cos §
cos(0 + ¢) = cosf cos ¢ — sin G sin ¢
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SR I RAMNFEE The Battle of the Cubic Equation and the Dawn of the Complex

Numbers
JUAER TS R 0 R R IA T? 2% + 1 = 0 BHCEASL ( imaginary unit)
i, R

T PAE L HL (complex numbers)
z=1x(Rez)+ix (Imz)

Rez fll Imz 4330 = FSEHERAEEHR .
LI
SEEE T | A GAA HSA R X, BAR T DA — 88 3¢ T = ROy R SR n o e

4By combining imaginary and real numbers, any complez number can be defined to be some linear combi-

nation of the real unit number “1” with the imaginary unit number ¢ that is,

with the real valued factors respectively. By this definition, a complex number z can be decomposed into
real numbers x, y, r and ¢ such that

In what follows, a very brief review of complex analysis, or, by another term, function theory, will be presented.
For much more detailed introductions to complex analysis, including proofs, take, for instance, the “classical”
books among a zillion of other very good ones. We shall study complex analysis not only for its beauty but
also because it yields very important analytical methods and tools; for instance for the solution of (differential)
equations and the computation of definite integrals. These methods will then be required for the computation
of distributions and Green’s functions, as well for the solution of differential equations of mathematical physics
— such as the Schrédinger equation.

One motivation for introducing imaginary numbers is the (if you perceive it that way) “malady” that not every
polynomial such as P(x) = 22 + 1 has a root x — and thus not every (polynomial) equation P(x) = 22 +1 =0
has a solution = — which is a real number. Indeed, you need the imaginary unit i> = —1 for a factorization
P(z) = (z +i)(z — ¢) yielding the two roots £i to achieve this. In that way, the introduction of imaginary
numbers is a further step towards omni-solvability. No wonder that the fundamental theorem of algebra, stating
that every non-constant polynomial with complex coefficients has at least one complex root — and thus total
factorizability of polynomials into linear factors follows!

If not mentioned otherwise, it is assumed that the Riemann surface, representing a “deformed version” of
the complex plane for functional purposes, is simply connected. Simple connectedness means that the Riemann
surface is path-connected so that every path between two points can be continuously transformed, staying
within the domain, into any other path while preserving the two endpoints between the paths. In particular,
suppose that there are no “holes” in the Riemann surface; it is not “punctured.”

Furthermore,

Note that the function ¢ — €% is not injective. In particular, exp(i¢) = exp(i(¢ + 27k) for arbitrary k € Z.
This has no immediate consequence on z; but it yields differences for functions thereof, like the square root
or the logarithm. A remedy is the introduction of Riemann surfaces which are “extended” and “deformed”
versions of the complex plane.

Many rules of classical arithmetic can be carried over to complex arithmetic. Note, however, that, because
of noninjectivity of exp(ip) for arbitrary values of ¢, for instance, \/5\/5 = Vab is only valid if at least one
factor a or b is positive; otherwise one could construct wrong deductions —1 = 2 Z Vi2Vi2 z V—1v/—1 z

(—1)2 = 1. More generally, for two arbitrary numbers, u and v, v/u/v is not always equal to y/uv. 5 The
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magical complex numbers

)

The magic number "1

How is it that —1 can have a square root? The square of a positive number is always
positive, and the square of a negative number is again positive (and the square of 0 is just
0 again, so that is hardly of use to us here). It seems impossible that we can find a number
whose square is actually negative. Yet, this is the kind of situation that we have seen before,
when we ascertained that 2 has no square root within the system of rational numbers. In that
case we resolved the situation by extending our system of numbers from the rationals to a
larger system, and we settled on the system of reals. Perhaps the same trick will work again.
Indeed it will. In fact what we have to do is something much easier and far less drastic than
the passage from the rationals to the reals. (Raphael Bombelli introduced the procedure in
1572 in his work L’Algebra, following Gerolamo Cardano’s original encounters with complex
numbers in his Ars Magna of 1545.) All we need do is introduce a single quantity, called * 7 7,
which is to square to —1, and adjoin it to the system of reals, allowing combinations of ¢ with

real numbers to form expressions such as
a+1ib

where a and b are arbitrary real numbers. Any such combination is called a complex number.

It is easy to see how to add complex numbers:
(a+1ib) 4+ (c+id) = (a +¢) +i(b+ d)

which is of the same form as before (with the real numbers a + ¢ and b + d taking the place
of the a and b that we had in our original expression). What about multiplication? This is
almost as easy. Let us find the product of a + ib with ¢ + id. We first simply multiply these

factors, expanding the expression using the ordinary rules of algebra: !

(a+1b)(c +id) = ac + ibc + aid + ibid
= ac +i(bc + ad) + i*bd

n’th root of a complex number z parameterized by many (indeed, an infinity of) angles ¢ is no unique function

any longer, as v/z = {/|z|exp (i¢/n + 2wik/n) with k € Z. Thus, in particular, for the square root with

n =2, Vuy/v = /|u| |v|exp [(i/2)(pn + o) exp [iT(ky + ky)]. Therefore, with v = —1 = exp[im(1 4 2k)] and
—_——

+1
v =—1=exp[in(1 + 2k")] and k, k' € Z, one obtains v/—1y/—1 = exp[(i/2)(7 + m)] exp [im(k + k")] = F1, for
1 +1
even and odd k + k', respectively.
For many mathematicians Fuler’s identity
e =—1,0ore™+1=0, (2.18)

is the “most beautiful” theorem
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But i2 = —1, so we can rewrite this as
(a+1ib)(c+id) = (ac — bd) + i(bc + ad),

which is again of the same form as our original a + ib, but with ac — bd taking the place of a
and bc + ad taking the place of b.

It is easy enough to subtract two complex numbers, but what about division? Recall that
in the ordinary arithmetic we are allowed to divide by any real number that is not zero. Now
let us try to divide the complex number a + ib by the complex number ¢ + id. We must take
the latter to be non-zero, which means that the real numbers ¢ and d cannot both be zero.
Hence ¢? + d* > 0, and therefore ¢ + d? # 0, so we are allowed to divide by ¢? + d?. It is a
direct exercise [*) to check (multiplying both sides of the expression below by ¢+ id) that

(a+ib) ac+bd = bc—ad

(c+id) 02+d2+102+d2'

This is of the same general form as before, so it is again a complex number.

When we get used to playing with these complex numbers, we cease to think of a + ib
as a pair of things, namely the two real numbers a and b, but we think of a 4+ ib as an entire
thing on its own, and we could use a single letter, say z, to denote the whole complex number

z = a+ib. It may
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